1 Introduction to Groups

Definition 1 A Group G is a set with an operation * which satisfies the following:

1. there is an identity element $e \in G$, such that for every $a \in G$

$$
e * a=a * e=e
$$

2. every element has an inverse, i.e. if $a \in G$ there exists an element $a^{-1} \in G$

$$
a * a^{-1}=a^{-1} * a=e
$$

3. the group is closed under the operation, i.e. if $a \in G$ and $b \in G$ then $a * b \in G$.
4. the associativity rule is satisfied: i.e. for all $a, b, c \in G$

$$
a *(b * c)=(a * b) * c
$$

What does this mean?

- A group consists of two things:

1. a set of elements
2. an 'operation' which acts upon two elements in the set to return another element. This operation must satisfy the properties given above.

- the set can contain a finite or infinite number of elements
- the set must contain an identity. There can only be one identity. The identity depends on the operation.
Example: For the real numbers, 0 is the identity for addition, but 1 is the identity for multiplication.
- Every element in the set must have an inverse in the set too (depending on the operation) Example: For the real numbers, taking the number 5, under addition its inverse is -5 , but under multiplication it is $\frac{1}{5}$.
- The operator * may not give you an element which is not in the set, so if $a, b \in G$ and

$$
a * b=c \quad c \notin G
$$

then it is not a group.

- Associativity just checks that the order which you apply the operation does not matter.
- Note that we do not care about the following:

$$
a * b=b * a
$$

In many groups (especially those of matrices) this is not true, but that's okay. If this is true, then we say the operation is commutative. As long as

$$
a * b \in G \quad \text { and } \quad b * a \in G
$$

then the group is closed under the operation.
A group whose operation is commutative is called Abelian.

1.1 Examples

Examples are core to understanding the concept of groups. I shall take some set and operation pairings $(S, *)$ and see if they are groups by checking the required properties.

1.1.1 $\quad G_{1}=(\mathbb{Z},+)$

Here the set is all the integers \mathbb{Z}, under the operation of addition "+". Taking each property in turn:

- Identity: What number can you add to 5 to get 5 ? More mathematically $x+5=5$, solve for x. Ans: $x=0$. So we can see that for addition the identity is zero, since for every $a \in \mathbb{Z}$

$$
a+0=0+a=a
$$

- Inverse: What number can you add to 5 to get the identity 0 ? That is we want to solve $x+5=0$ for x. Ans: $x=-5$. So under addition, -5 is the inverse of 5 . Extending this, you may say that for every $a \in \mathbb{Z}$ there is an inverse $-a \in \mathbb{Z}$ so that

$$
a+(-a)=(-a)+a=0
$$

- Closure: If you add an integer to an integer, do you always get an integer? Yes! It is enough to state this fact, and conclude that when $a, b \in G_{1}$ then $a+b \in G_{1}$.
- Associativity: The operation of addition is associative since

$$
a+(b+c)=a+b+c=(a+b)+c
$$

i.e. the order you add integers is irrelevant.

Since all four properties are true, then G_{1} a group.

$1.2 \quad G_{2}=(\mathbb{R}, \cdot)$

Here we take the set of all real numbers with the operation of multiplication ".".

- Identity: What number can you multiply by 5 to get 5 ? Ans: 1 . So for addition, the identity is one, since for every $a \in \mathbb{R}$

$$
a \cdot 1=1 \cdot a=a
$$

- Inverse: What number can you multiply by 5 to get the identity 1? Ans: $\frac{1}{5}$. So under multiplication, $\frac{1}{5}$ is the inverse of 5 . Extending this, can we say that for every $a \in \mathbb{R}$ there is an inverse $\frac{1}{5} \in \mathbb{R}$ so that

$$
a \cdot \frac{1}{a}=\frac{1}{a} \cdot a=1 \quad ?
$$

No! The element 0 does not have an inverse! The fraction $\frac{1}{0}$ is not defined.
Since this property is false, G_{2} is not a group.
How can we make this a group? Since the only problem element is 0 , try the following:

$1.3 \quad G_{3}=(\mathbb{R} \backslash\{0\}, \cdot)$

Here we take the set of all real numbers, but excluding the number 0 , with the operation of multiplication".".

- Identity: As above, the identity is 1 .
- Inverse: Is it true that for every $a \in \mathbb{R}$ there is an inverse $\frac{1}{a} \in \mathbb{R} \backslash 0$ so that

$$
a \cdot \frac{1}{a}=\frac{1}{a} \cdot a=1 \quad ?
$$

Yes!

- Closure: If you multiply two (non-zero) real numbers, do you always get a (non-zero) real number? Yes! It is enough to state this fact, and conclude that when $a, b \in G_{3}$ then $a \cdot b \in G_{3}$.
- Associativity: The operation of addition is associative since

$$
a \cdot(b \cdot c)=a \cdot b \cdot c=(a \cdot b) \cdot c
$$

since the order you multiply real numbers is irrelevant.
Since all four properties are true, G_{3} is a group.

$1.4 \quad G_{4}=\left(M_{2}(\mathbb{R}),+\right)$

Here the set is all the 2×2 matrices whose entries are real numbers, under the operation of addition "+". So every element $a \in M_{2}(\mathbb{R})$ is of the form:

$$
a=\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right)
$$

where $a_{1,1}, a_{1,2}, a_{2,1}, a_{2,2} \in \mathbb{R}$. Addition of two matrices is defined as:

$$
\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right)+\left(\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} \\
a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2}
\end{array}\right)
$$

Taking each property in turn:

- Identity: $a \in M_{2}(\mathbb{R})$. Take

$$
e=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \in M_{2}(\mathbb{R})
$$

Then it is easy to see that

$$
a+e=e+a=a
$$

- Inverse: For every $a \in M_{2}(\mathbb{R})$ there is an inverse " $-a$ " $\in M_{2}(\mathbb{R})$ of the form

$$
\begin{gathered}
-a=\left(\begin{array}{ll}
-a_{1,1} & -a_{1,2} \\
-a_{2,1} & -a_{2,2}
\end{array}\right) \\
a+(-a)=(-a)+a=0
\end{gathered}
$$

- Closure: If you add two real numbers, you always get an real number (since $(\mathbb{R},+)$ is a group). Adding two matrices is in effect, adding their components. The components are real, so their sum is real It is enough to state this, and conclude that when $a, b \in G_{4}$ then $a+b \in G_{4}$.
- Associativity: The operation of addition is associative since addition of real numbers is associative (as $(\mathbb{R},+)$ is a group).

$$
a+(b+c)=a+b+c=(a+b)+c
$$

i.e. the order you add integers is irrelevant.

Since all four properties are true, then G_{4} is a group.

$1.5 \quad G_{5}=\left(M_{2}(\mathbb{R}) \backslash\{0\}, \cdot\right)$

Here the set is all the 2×2 matrices whose entries are real numbers, excluding the all zero matrix, i.e.

$$
0=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

under the operation of multiplication ".". Multiplication of two matrices is defined as:

$$
\left(\begin{array}{cc}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right) \cdot\left(\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1,1} b_{1,1}+a_{1,2} b_{2,1} & a_{1,1} b_{2,1}+a_{1,2} b_{2,2} \\
a_{2,1} b_{1,1}+a_{2,2} b_{2,1} & a_{2,1} b_{2,1}+a_{2,2} b_{2,2}
\end{array}\right)
$$

Taking each property in turn:

- Identity: $a \in G_{5}$. Take

$$
e=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \in G_{5}
$$

Then it is easy to see that

$$
a+e=e+a=a
$$

- Inverse: For every $a \in G_{5}$ is there an inverse $a^{-1} \in G_{5}$ of the form

$$
a^{-1}=\frac{1}{a_{1,1} a_{2,2}-a_{1,2} a_{2,1}}\left(\begin{array}{cc}
a_{2,2} & -a_{1,2} \\
-a_{2,1} & a_{1,1}
\end{array}\right)
$$

such that

$$
a \cdot a^{-1}=a^{-1} \cdot a=0 \quad ?
$$

Warning! But what if $a_{1,1} a_{2,2}-a_{1,2} a_{2,1}=\operatorname{det}(a)=0$? Then we have a divide-by-zero! Which means not every element in G_{5} has an inverse, so G_{5} is not a group!

1.6 $G_{6}=\left(\left\{a \in M_{2}(\mathbb{R})\right.\right.$ where $\left.\left.\operatorname{det}(a) \neq 0\right\}, \cdot\right)$

Here the set is all the 2×2 matrices whose entries are real numbers with non-zero determinant, under the operation of multiplication ".". Note that the zero matrix has zero determinant, so is excluded anyway.
Taking each property in turn:

- Identity: As above, the identity is

$$
e=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \in G_{6}
$$

- Inverse: For every $a \in G_{6}$ there is an inverse $a^{-1} \in G_{6}$ of the form

$$
a^{-1}=\frac{1}{\operatorname{det}(a)}\left(\begin{array}{cc}
a_{2,2} & -a_{1,2} \\
-a_{2,1} & a_{1,1}
\end{array}\right)
$$

so that

$$
a \cdot a^{-1}=a^{-1} \cdot a=0
$$

Here it is impossible that $\operatorname{det}(a)=0$, so we are safe.

- Closure: If you multiply two real numbers, you always get an real number (since ($\mathbb{R} \backslash\{0\}, \cdot$) is a group). Adding two matrices is in effect, adding their components. The components are real, so their sum is real It is enough to state this, and conclude that when $a, b \in G_{6}$ then $a \cdot b \in G_{6}$.
- Associativity: The operation of addition is associative since addition of real numbers is associative (as $(\mathbb{R},+)$ is a group).

$$
a+(b+c)=a+b+c=(a+b)+c
$$

i.e. the order you add integers is irrelevant.

Since all four properties are true, then G_{6} a group.
More examples of groups use things other than numbers or matrices. However the rules to be checked are the exact same.

1.7 Permutations

1.8 Rotations

2 More Non-Groups

The following are not groups. Can you see why?

- (\mathbb{Z}, \cdot) - the integers under multiplication
- $(\mathbb{Z},-)$ - the integers under subtraction
- (\mathbb{Z}, \div) - the integers under division
- $(\mathbb{R},-)$ - the integers under subtraction
- (\mathbb{R}, \div) - the integers under division

3 Answers to "More Non-Groups"

- (\mathbb{Z}, \cdot) - no element has an inverse except the identity 1.
- $(\mathbb{Z},-)$ - associativity rule broken
- (\mathbb{Z}, \div) - not closed, associativity rule broken
- ($\mathbb{R},-)$ - associativity rule broken
- (\mathbb{R}, \div) - not closed $\left(\frac{1}{0} \notin \mathbb{R}\right)$, associativity rule broken

